Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38629316

RESUMO

Filter-feeding demosponges are modular organisms that consist of modules each with one water-exit osculum. Once a mature module has been formed, the weight-specific filtration and respiration rates do not change. Sponge modules only grow to a certain size and for a sponge to increase in size, new modules must be formed. However, the growth characteristics of a small single-osculum module sponge are fundamentally different from those of multi-modular sponges, and a theoretically derived volume-specific filtration rate scales as F/V=V-1/3, indicating a decrease with increasing total module volume (V, cm3). Here, we studied filtration rate (F, l h-1), respiration rate (R, ml O2 h-1), volume-specific (F/V) and weight-specific (F/W) filtration rates, and the ratios F/R and F/W along with growth rates of small single-osculum demosponge Halichondria panicea explants of various sizes exposed to various concentrations of algal cells. The following relationships were found: F/V=7.08V-0.24, F=a1W1.05, and R=a2W0.68 where W is the dry weight (mg). The F/R and F/W ratios were constant and essentially independent of W, and other data indicate exponential growth. It is concluded that the experimental data support the theoretical F/V∝V-1/3.


Assuntos
Poríferos , Água , Animais , Respiração , Filtração , Taxa Respiratória
2.
Toxicology ; : 153806, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642821

RESUMO

This study aimed to investigate sex, age, and species differences of perfluorooctanoic acid (PFOA) using physiologically-based pharmacokinetic (PBPK) models in rats and humans. PBPK models were generally developed as either flow- or permeability-limited models. The flow-limited model is cost-effective and allows for human PK prediction through simple allometric scaling, while the permeability-limited model can incorporate detailed information on the disposition process through in vitro-in vivo extrapolation (IVIVE). PFOA was administered via oral or intravenous administration with 5mg/kg in male and female rats of different ages and the data was used to develop the PBPK models. Our results showed that both models successfully captured sex differences in rats, while only the flow-limited model with male rats and the permeability-limited model with both male and female rats provided comparable predictions in the human clinical study. More than the flow-limited model, the permeability-limited model effectively explained sex differences in rats and species differences through IVIVE. Additionally, the ontogeny-based mechanistic description of PFOA disposition enabled the interpretation of age- and sex-dependent pharmacokinetics. Although the flow-limited PBPK model lacked mechanistic interpretability compared to the permeability-limited model, it demonstrated reliable human prediction through simple allometric scaling. In conclusion, the permeability PBPK model could interpret age, sex, and species differences and it could improve the accuracy of human prediction.

3.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474292

RESUMO

E0703, a new steroidal compound optimized from estradiol, significantly increased cell proliferation and the survival rate of KM mice and beagles after ionizing radiation. In this study, we characterize its preclinical pharmacokinetics (PK) and predict its human PK using a physiologically based pharmacokinetic (PBPK) model. The preclinical PK of E0703 was studied in mice and Rhesus monkeys. Asian human clearance (CL) values for E0703 were predicted from various allometric methods. The human PK profiles of E0703 (30 mg) were predicted by the PBPK model in Gastro Plus software 9.8 (SimulationsPlus, Lancaster, CA, USA). Furthermore, tissue distribution and the human PK profiles of different administration dosages and forms were predicted. The 0.002 L/h of CL and 0.005 L of Vss in mice were calculated and optimized from observed PK data. The plasma exposure of E0703 was availably predicted by the CL using the simple allometry (SA) method. The plasma concentration-time profiles of other dosages (20 and 40 mg) and two oral administrations (30 mg) were well-fitted to the observed values. In addition, the PK profile of target organs for E0703 exhibited a higher peak concentration (Cmax) and AUC than plasma. The developed E0703-PBPK model, which is precisely applicable to multiple species, benefits from further clinical development to predict PK in humans.


Assuntos
Protetores contra Radiação , Camundongos , Humanos , Animais , Cães , Modelos Biológicos , Administração Oral , Distribuição Tecidual , Farmacocinética
4.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543155

RESUMO

The objectives of this study were to support dose selection of a novel FXR agonist XZP-5610 in first-in-human (FIH) trials and to predict its liver concentrations in Chinese healthy adults. Key parameters for extrapolation were measured using in vitro and in vivo models. Allometric scaling methods were employed to predict human pharmacokinetics (PK) parameters and doses for FIH clinical trials. To simulate the PK profiles, a physiologically based pharmacokinetic (PBPK) model was developed using animal data and subsequently validated with clinical data. The PBPK model was employed to simulate XZP-5610 concentrations in the human liver across different dose groups. XZP-5610 exhibited high permeability, poor solubility, and extensive binding to plasma proteins. After a single intravenous or oral administration of XZP-5610, the PK parameters obtained from rats and beagle dogs were used to extrapolate human parameters, resulting in a clearance of 138 mL/min and an apparent volume of distribution of 41.8 L. The predicted maximum recommended starting dose (MRSD), minimal anticipated biological effect level (MABEL), and maximum tolerated dose (MTD) were 0.15, 2, and 3 mg, respectively. The PK profiles and parameters of XZP-5610, predicted using the PBPK model, demonstrated good consistency with the clinical data. By using allometric scaling and PBPK models, the doses, PK profile, and especially the liver concentrations were successfully predicted in the FIH study.

5.
J Aerosol Med Pulm Drug Deliv ; 37(2): 77-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237032

RESUMO

Animal studies are an important component of drug product development and the regulatory review process since modern practices have been in place, for almost a century. A variety of experimental systems are available to generate aerosols for delivery to animals in both liquid and solid forms. The extrapolation of deposited dose in the lungs from laboratory animals to humans is challenging because of genetic, anatomical, physiological, pharmacological, and other biological differences between species. Inhaled drug delivery extrapolation requires scrutiny as the aerodynamic behavior, and its role in lung deposition is influenced not only by the properties of the drug aerosol but also by the anatomy and pulmonary function of the species in which it is being evaluated. Sources of variability between species include the formulation, delivery system, and species-specific biological factors. It is important to acknowledge the underlying variables that contribute to estimates of dose scaling between species.


Assuntos
Sistemas de Liberação de Medicamentos , Pulmão , Animais , Humanos , Administração por Inalação , Aerossóis , Pulmão/fisiologia
6.
Pharmaceutics ; 16(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276498

RESUMO

This commentary further reflects on the paper of De Sutter et al. on predicting volume of distribution in neonates, and the performance of physiologically based pharmacokinetic models We hereby stressed the add on value to collaborate on real world data to further close this knowledge gap. We illustrated this by weight distribution characteristics in breastfed (physiology) and in asphyxiated (pathophysiology), with additional reflection on their kidney and liver function.

7.
J Pharm Sci ; 113(1): 158-166, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866625

RESUMO

The goal of this work was to develop a physiologically-based pharmacokinetic (PBPK) modeling framework for cisplatin. The model was constructed based on 11 published data sets from rodents; and rabbit, dog, and human data were used to evaluate its utility in predicting plasma and tissue distribution of platinum in larger species, including humans. The model included biotransformation of cisplatin into mobile (k1) and fixed (k2) metabolites in all tissues, and subsequent conversion of fixed metabolites to mobile metabolites (k3) due to protein degradation and turnover. The model successfully captured complex pharmacokinetics of platinum in rodents, and all parameters were estimated with sufficient precision. A separate k2 parameter was estimated for each included tissue, and the relationship between the rates of formation of mobile and fixed metabolites was established through a scaling factor (k1=k2·SF, SF=0.74). For interspecies predictions, k1 and k2 were shared across all species, and k3 was scaled allometrically based on protein turnover rate (with an exponent of -0.28). Scaled PBPK model provided a good prediction of total platinum profiles in humans and reasonably captured platinum measurements in human tissues (as obtained from autopsy).


Assuntos
Cisplatino , Platina , Humanos , Animais , Cães , Coelhos , Modelos Biológicos , Distribuição Tecidual , Farmacocinética
8.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921078

RESUMO

The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.


Assuntos
Borboletas , Animais , Masculino , Borboletas/fisiologia , Microtomografia por Raio-X , Evolução Biológica , Olho/anatomia & histologia , Opsinas
9.
J Math Biol ; 87(6): 82, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930406

RESUMO

The Lotka-Volterra competition model (LVCM) is a fundamental tool for ecology, widely used to represent complex communities. The Allee effect (AE) is a phenomenon in which there is a positive correlation between population density and fitness, at low population densities. However, the interplay between the LVCM and AE has been seldom analyzed in multispecies models. Here, we analyze the mathematical properties of the LVCM [Formula: see text] AE, investigating the coexistence of species interacting through neutral diffuse competition, their equilibria and stable points. Minimum viable population density arises as the threshold below which species go extinct, characteristic of strong Allee effects. Then, by imposing relationships of main parameters to body size, i.e. allometric scaling, we derive a general solution to the size-scaling maximum and minimum expected density under plausible scenarios. The scaling of maximum population density is consistent with the literature, but we also provide novel predictions on the scaling of the lower limit to population density, a critical value for conservation science. The resulting framework is general and yields results that increase our current understanding of how complex demographic processes can be linked to ubiquitous ecological patterns.


Assuntos
Tamanho Corporal , Densidade Demográfica
10.
Am J Bot ; 110(12): e16253, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938812

RESUMO

PREMISE: Moss sporophytes differ strongly in size and biomass partitioning, potentially reflecting reproductive and dispersal strategies. Understanding how sporophyte traits are coordinated is essential for understanding moss functioning and evolution. This study aimed to answer: (1) how the size and proportions of the sporophyte differ between moss species with and without a prominent central strand in the seta, (2) how anatomical and morphological traits of the seta are related, and (3) how sporophytic biomass relates to gametophytic biomass and nutrient concentrations. METHODS: We studied the relationships between seta anatomical and morphological traits, the biomass of seta, capsule, and gametophyte, and carbon, nitrogen, and phosphorus concentrations of 27 subtropical montane moss species. RESULTS: (1) Moss species with a prominent central strand in the seta had larger setae and heavier capsules than those without a prominent strand. (2) With increasing seta length, setae became thicker and more rounded for both groups, while in species with a prominent central strand, the ratio of transport-cell area to epidermal area decreased. (3) In both groups, mosses with greater gametophytic biomass tended to have heavier sporophytes, but nitrogen and phosphorus concentrations in the gametophyte were unrelated to sporophytic traits. CONCLUSIONS: Our study highlights that the central strand in the seta may have an important functional role and affect the allometry of moss sporophytes. The coordinated variations in sporophyte morphological and anatomical traits follow basic biomechanical principles of cylinder-like structures, and these traits relate only weakly to the gametophytic nutrient concentrations. Research on moss sporophyte functional traits and their relationships to gametophytes is still in its infancy but could provide important insights into their adaptative strategies.


Assuntos
Briófitas , Bryopsida , Células Germinativas Vegetais , Briófitas/anatomia & histologia , Nitrogênio , Fósforo
11.
Proc Natl Acad Sci U S A ; 120(42): e2308496120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812720

RESUMO

Human diseases involve metabolic alterations. Metabolomic profiles have served as a vital biomarker for the early identification of high-risk individuals and disease prevention. However, current approaches can only characterize individual key metabolites, without taking into account the reality that complex diseases are multifactorial, dynamic, heterogeneous, and interdependent. Here, we leverage a statistical physics model to combine all metabolites into bidirectional, signed, and weighted interaction networks and trace how the flow of information from one metabolite to the next causes changes in health state. Viewing a disease outcome as the consequence of complex interactions among its interconnected components (metabolites), we integrate concepts from ecosystem theory and evolutionary game theory to model how the health state-dependent alteration of a metabolite is shaped by its intrinsic properties and through extrinsic influences from its conspecifics. We code intrinsic contributions as nodes and extrinsic contributions as edges into quantitative networks and implement GLMY homology theory to analyze and interpret the topological change of health state from symbiosis to dysbiosis and vice versa. The application of this model to real data allows us to identify several hub metabolites and their interaction webs, which play a part in the formation of inflammatory bowel diseases. The findings by our model could provide important information on drug design to treat these diseases and beyond.


Assuntos
Ecossistema , Metabolômica , Humanos , Modelos Estatísticos , Biomarcadores/metabolismo , Física
12.
AAPS J ; 25(6): 101, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891410

RESUMO

The prediction of transgene product expression in human is important to guide first-in-human (FIH) dose selection for viral vector-based gene replacement therapies. Recently, allometric scaling from preclinical data and interspecies normalization of dose-response (D-R) relationship have been used to predict human transgene product expression of adeno-associated virus (AAV) vectors. In this study, we assessed two interspecies allometric scaling methods and two dose-response methods in predicting human transgene product expression of nine intravenously administered AAV vectors, one intramuscularly administered AAV vector, and one intravesical administered adenoviral vector. Among the four methods, normalized D-R method generated the highest prediction accuracy, with geometric mean fold error (GMFE) of 2.9 folds and 75% predictions within fivefold deviations of observed human transgene product levels. The vg/kg-based D-R method worked well for locally delivered vectors but substantially overpredicted human transgene product levels of some hemophilia A and B vectors. For both intravenously and locally administered vectors, the prediction accuracy of allometric scaling using body weight^-0.25 (AS by W^-0.25) was superior to allometric scaling using log(body weight) (AS by logW). This study successfully extended the use of allometric scaling and interspecies D-R normalization methods for human transgene product prediction from intravenous viral vectors to locally delivered viral vectors.


Assuntos
Terapia Genética , Hemofilia A , Humanos , Transgenes/genética , Vetores Genéticos/genética , Peso Corporal
13.
Philos Trans R Soc Lond B Biol Sci ; 378(1891): 20220553, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37839441

RESUMO

There are no comparative, empirical studies of the energetic costs of feeding in mammals. As a result, we lack physiological data to better understand the selection pressures on the mammalian feeding apparatus and the influence of variables such as food geometric and material properties. This study investigates interspecific scaling of the net energetic costs of feeding in relation to body size, jaw-adductor muscle mass and food properties in a sample of 12 non-human primate species ranging in size from 0.08 to 4.2 kg. Net energetic costs during feeding were measured by indirect calorimetry for a variety of pre-cut and whole raw foods varying in geometric and material properties. Net feeding costs were determined in two ways: by subtracting either the initial metabolic rate prior to feeding or subtracting the postprandial metabolic rate. Interspecific scaling relationships were evaluated using pGLS and OLS regression. Net feeding costs scale negatively relative to both body mass and jaw-adductor mass. Large animals incur relatively lower feeding costs indicating that small and large animals experience and solve mechanical challenges in relation to energetics in different ways. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.


Assuntos
Mamíferos , Primatas , Animais , Primatas/fisiologia , Mamíferos/fisiologia , Músculo Esquelético/fisiologia , Tamanho Corporal/fisiologia , Comportamento Alimentar
14.
Pharmaceutics ; 15(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37765316

RESUMO

The volume of distribution at steady state (Vss) in neonates is still often estimated through isometric scaling from adult values, disregarding developmental changes beyond body weight. This study aimed to compare the accuracy of two physiologically based pharmacokinetic (PBPK) Vss prediction methods in neonates (Poulin & Theil with Berezhkovskiy correction (P&T+) and Rodgers & Rowland (R&R)) with isometrical scaling. PBPK models were developed for 24 drugs using in-vitro and in-silico data. Simulations were done in Simcyp (V22) using predefined populations. Clinical data from 86 studies in neonates (including preterms) were used for comparison, and accuracy was assessed using (absolute) average fold errors ((A)AFEs). Isometric scaling resulted in underestimated Vss values in neonates (AFE: 0.61), and both PBPK methods reduced the magnitude of underprediction (AFE: 0.82-0.83). The P&T+ method demonstrated superior overall accuracy compared to isometric scaling (AAFE of 1.68 and 1.77, respectively), while the R&R method exhibited lower overall accuracy (AAFE: 2.03). Drug characteristics (LogP and ionization type) and inclusion of preterm neonates did not significantly impact the magnitude of error associated with isometric scaling or PBPK modeling. These results highlight both the limitations and the applicability of PBPK methods for the prediction of Vss in the absence of clinical data.

15.
Crit Rev Toxicol ; 53(4): 207-228, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401640

RESUMO

When registering a new pesticide, 90-day oral toxicity studies performed with both rodent and non-rodent species, typically rats and dogs, are part of a standard battery of animal tests required in most countries for human health risk assessment (RA). This analysis set out to determine the need for the 90-day dog study in RA by reviewing data from 195 pesticides evaluated by the US Environmental Protection Agency (USEPA) from 1998 through 2021. The dog study was used in RA for only 42 pesticides, mostly to set the point of departure (POD) for shorter-term non-dietary pesticide exposures. Dog no-observed-adverse-effect-levels (NOAELs) were lower than rat NOAELs in 90-day studies for 36 of the above 42 pesticides, suggesting that the dog was the more sensitive species. However, lower NOAELs may not necessarily correspond to greater sensitivity as factors such as dose spacing and/or allometric scaling need to be considered. Normalizing doses between rats and dogs explained the lower NOAELs in 22/36 pesticides, indicating that in those cases the dog was not more sensitive, and the comparable rat study could have been used instead for RA. For five of the remaining pesticides, other studies of appropriate duration besides the 90-day rat study were available that would have offered a similar level of protection if used to set PODs. In only nine cases could no alternative be found in the pesticide's database to use in place of the 90-day dog study for setting safe exposure levels or to identify unique hazards. The present analysis demonstrates that for most pesticide risk determinations the 90-day dog study provided no benefit beyond the rat or other available data.


Assuntos
Praguicidas , Estados Unidos , Ratos , Cães , Humanos , Animais , Praguicidas/toxicidade , Testes de Toxicidade , Nível de Efeito Adverso não Observado , Medição de Risco , United States Environmental Protection Agency
16.
Curr Zool ; 69(3): 294-303, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351295

RESUMO

Body shape and metabolic rate can be important determinants of animal performance, yet often their effects on influential traits are evaluated in a non-integrated way. This creates an important gap because the integration between shape and metabolism may be crucial to evaluate metabolic scaling theories. Here, we measured standard metabolic rate in 1- and 2-years old juvenile brown trout Salmo trutta, and used a geometric morphometrics approach to extricate the effects of ontogeny and size on the link between shape and metabolic scaling. We evidenced near-isometric ontogenetic scaling of metabolic rate with size, but also a biphasic pattern driven by a significant change in metabolic scaling, from positive to negative allometry. Moreover, the change in metabolic allometry parallels an ontogenetic change from elongate to deep-bodied shapes. This is consistent with the dynamic energy budget (DEB) and surface area (SA) theories, but not with the resource transport network theory which predicts increasing allometric exponents for trends towards more robust, three-dimensional bodies. In addition, we found a relationship between body shape and size independent metabolic rate, with a positive correlation between robustness and metabolic rate, which fits well within the view of Pace-of-Life Syndromes (POLS). Finally, our results align with previous studies that question the universality of metabolic scaling exponents and propose other mechanistic models explaining the diversity of metabolic scaling relationships or emphasizing the potential contribution of ecological factors.

17.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37293932

RESUMO

Atta leaf-cutter ants are the prime herbivore in the Neotropics: differently sized foragers harvest plant material to grow a fungus as a crop. Efficient foraging involves complex interactions between worker size, task preferences and plant-fungus suitability; it is, however, ultimately constrained by the ability of differently sized workers to generate forces large enough to cut vegetation. In order to quantify this ability, we measured bite forces of Atta vollenweideri leaf-cutter ants spanning more than one order of magnitude in body mass. Maximum bite force scaled almost in direct proportion to mass; the largest workers generated peak bite forces 2.5 times higher than expected from isometry. This remarkable positive allometry can be explained via a biomechanical model that links bite forces with substantial size-specific changes in the morphology of the musculoskeletal bite apparatus. In addition to these morphological changes, we show that bite forces of smaller ants peak at larger mandibular opening angles, suggesting a size-dependent physiological adaptation, probably reflecting the need to cut leaves with a thickness that corresponds to a larger fraction of the maximum possible gape. Via direct comparison of maximum bite forces with leaf mechanical properties, we demonstrate (i) that bite forces in leaf-cutter ants need to be exceptionally large compared with body mass to enable them to cut leaves; and (ii), that the positive allometry enables colonies to forage on a wider range of plant species without the need for extreme investment in even larger workers. Our results thus provide strong quantitative arguments for the adaptive value of a positively allometric bite force.


Assuntos
Formigas , Animais , Formigas/fisiologia , Força de Mordida , Mandíbula/anatomia & histologia , Herbivoria , Folhas de Planta/fisiologia
18.
Res Vet Sci ; 159: 213, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150056

Assuntos
Lipídeos , Animais , Emulsões
19.
Pharmaceuticals (Basel) ; 16(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37242468

RESUMO

Rivaroxaban (RIV) is one of the direct oral anticoagulants used to prevent and treat venous and arterial thromboembolic events. Considering the therapeutic indications, RIV is likely to be concomitantly administered with various other drugs. Among these is carbamazepine (CBZ), one of the recommended first-line options to control seizures and epilepsy. RIV is a strong substrate of cytochrome P450 (CYP) enzymes and Pgp/BCRP efflux transporters. Meanwhile, CBZ is well known as a strong inducer of these enzymes and transporters. Therefore, drug-drug interaction (DDI) between CBZ and RIV is expected. This study aimed to predict the DDI profile of CBZ and RIV in humans by using a population pharmacokinetics (PK) model-based approach. We previously investigated the population PK parameters of RIV administered alone or with CBZ in rats. In this study, those parameters were extrapolated from rats to humans by using simple allometry and liver blood flow scaling, and then applied to back-simulate the PK profiles of RIV in humans (20 mg RIV per day) used alone or with CBZ (900 mg CBZ per day). Results showed that CBZ significantly reduced RIV exposure. The AUCinf and Cmax of RIV decreased by 52.3% and 41.0%, respectively, following the first RIV dose, and by 68.5% and 49.8% at the steady state. Therefore, the co-administration of CBZ and RIV warrants caution. Further studies investigating the extent of DDIs between these drugs should be conducted in humans to fully understand their safety and effects.

20.
Pharmaceutics ; 15(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111697

RESUMO

The search for new drugs is an extremely time-consuming and expensive endeavour. Much of that time and money go into generating predictive human pharmacokinetic profiles from preclinical efficacy and safety animal data. These pharmacokinetic profiles are used to prioritize or minimize the attrition at later stages of the drug discovery process. In the area of antiviral drug research, these pharmacokinetic profiles are equally important for the optimization, estimation of half-life, determination of effective dose, and dosing regimen, in humans. In this article we have highlighted three important aspects of these profiles. First, the impact of plasma protein binding on two primary pharmacokinetic parameters-volume of distribution and clearance. Second, interdependence of primary parameters on unbound fraction of the drug. Third, the ability to extrapolate human pharmacokinetic parameters and concentration time profiles from animal profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...